Use argo_prof_*() functions to extract information from Argo profile NetCDF files. Use argo_read_prof_*() to extract information from a single previously-downloaded NetCDF file.

argo_prof_levels(path, vars = NULL, download = NULL, quiet = NA)

argo_prof_prof(path, vars = NULL, download = NULL, quiet = NA)

argo_prof_calib(path, vars = NULL, download = NULL, quiet = NA)

argo_prof_param(path, vars = NULL, download = NULL, quiet = NA)

argo_prof_history(path, vars = NULL, download = NULL, quiet = NA)

argo_prof_spectra(path, vars = NULL, download = NULL, quiet = NA)

Arguments

path

A path relative to the root directory of argo_mirror() or argo_cache_dir(). This value can also be a data.frame with a file column (e.g., a global index as returned by argo_global_meta() and others).

vars

A vector of variable names to include. Explicitly specifying vars can lead to much faster read times when reading many files.

download

A logical vector indicating whether or not a file should be downloaded. Defaults to the value of argo_should_download(), which is TRUE for files that do not exist in the cache.

quiet

Use FALSE to show which files are downloaded and for more verbose error messages.

Value

A tibble::tibble() with

  • argo_prof_levels(): one row per file per profile per sampling level.

  • argo_prof_prof(): one row per file per profile.

  • argo_prof_calib(): one row per file per profile per calibration per parameter.

  • argo_prof_param(): one row per file per profile per parameter.

  • argo_prof_history(): one row per file per profile per history entry.

  • argo_prof_spectra(): one row per file per profile per sampling level per spectra value.

Examples

with_argo_example_cache({
  argo_prof_levels("dac/csio/2900313/profiles/D2900313_000.nc")
})
#> Extracting from 1 file
#> # A tibble: 70 × 18
#>    file            n_levels n_prof   pres pres_qc pres_adjusted pres_adjusted_qc
#>    <chr>              <int>  <int>  <dbl> <chr>           <dbl> <chr>           
#>  1 csio/2900313/p…        1      1   9.80 1                9.80 1               
#>  2 csio/2900313/p…        2      1  20.1  1               20.1  1               
#>  3 csio/2900313/p…        3      1  29.9  1               29.9  1               
#>  4 csio/2900313/p…        4      1  39.7  1               39.7  1               
#>  5 csio/2900313/p…        5      1  49.9  1               49.9  1               
#>  6 csio/2900313/p…        6      1  60.3  1               60.3  1               
#>  7 csio/2900313/p…        7      1  69.7  1               69.7  1               
#>  8 csio/2900313/p…        8      1  80.3  1               80.3  1               
#>  9 csio/2900313/p…        9      1  90.2  1               90.2  1               
#> 10 csio/2900313/p…       10      1 100.   1              100.   1               
#> # … with 60 more rows, and 11 more variables: pres_adjusted_error <dbl>,
#> #   temp <dbl>, temp_qc <chr>, temp_adjusted <dbl>, temp_adjusted_qc <chr>,
#> #   temp_adjusted_error <dbl>, psal <dbl>, psal_qc <chr>, psal_adjusted <dbl>,
#> #   psal_adjusted_qc <chr>, psal_adjusted_error <dbl>

with_argo_example_cache({
  argo_prof_prof("dac/csio/2900313/profiles/D2900313_000.nc")
})
#> Extracting from 1 file
#> # A tibble: 1 × 27
#>   file    n_prof platform_number platform_type project_name pi_name cycle_number
#>   <chr>    <int> <chr>           <chr>         <chr>        <chr>          <dbl>
#> 1 csio/2…      1 2900313         PROVOR        CHINA ARGO … JIANPI…            0
#> # … with 20 more variables: direction <chr>, data_centre <chr>,
#> #   dc_reference <chr>, data_state_indicator <chr>, data_mode <chr>,
#> #   float_serial_no <chr>, firmware_version <chr>, wmo_inst_type <chr>,
#> #   date <dttm>, date_qc <dttm>, date_location <dttm>, latitude <dbl>,
#> #   longitude <dbl>, position_qc <chr>, positioning_system <chr>,
#> #   profile_pres_qc <chr>, profile_temp_qc <chr>, profile_psal_qc <chr>,
#> #   vertical_sampling_scheme <chr>, config_mission_number <dbl>

with_argo_example_cache({
  argo_prof_calib("dac/csio/2900313/profiles/D2900313_000.nc")
})
#> Extracting from 1 file
#> # A tibble: 3 × 9
#>   file    n_param n_calib n_prof parameter scientific_calib_… scientific_calib_…
#>   <chr>     <int>   <int>  <int> <chr>     <chr>              <chr>             
#> 1 csio/2…       1       1      1 PRES      none               none              
#> 2 csio/2…       2       1      1 TEMP      none               none              
#> 3 csio/2…       3       1      1 PSAL      PSAL_ADJUSTED = P… WJO: r =0.9999(+/…
#> # … with 2 more variables: scientific_calib_comment <chr>,
#> #   scientific_calib_date <chr>

with_argo_example_cache({
  argo_prof_param("dac/csio/2900313/profiles/D2900313_000.nc")
})
#> Extracting from 1 file
#> # A tibble: 3 × 4
#>   file                                  n_param n_prof station_parameters
#>   <chr>                                   <int>  <int> <chr>             
#> 1 csio/2900313/profiles/D2900313_000.nc       1      1 PRES              
#> 2 csio/2900313/profiles/D2900313_000.nc       2      1 TEMP              
#> 3 csio/2900313/profiles/D2900313_000.nc       3      1 PSAL              

with_argo_example_cache({
  argo_prof_history("dac/csio/2900313/profiles/D2900313_000.nc")
})
#> Extracting from 1 file
#> # A tibble: 3 × 15
#>   file           n_prof n_history history_institu… history_step history_software
#>   <chr>           <int>     <int> <chr>            <chr>        <chr>           
#> 1 csio/2900313/…      1         1 HZ               ARGQ         ""              
#> 2 csio/2900313/…      1         2 HZ               ARGQ         ""              
#> 3 csio/2900313/…      1         3 HZ               ARSQ         "WJO"           
#> # … with 9 more variables: history_software_release <chr>,
#> #   history_reference <chr>, history_date <chr>, history_action <chr>,
#> #   history_parameter <chr>, history_start_pres <dbl>, history_stop_pres <dbl>,
#> #   history_previous_value <dbl>, history_qctest <chr>

with_argo_example_cache({
  argo_prof_spectra("dac/aoml/5906206/profiles/BD5906206_016.nc")
})
#> Extracting from 1 file
#> # A tibble: 40,590 × 5
#>    file                             n_values n_levels n_prof uv_intensity_nitra…
#>    <chr>                               <int>    <int>  <int>               <dbl>
#>  1 aoml/5906206/profiles/BD5906206…        1        1      1                  NA
#>  2 aoml/5906206/profiles/BD5906206…        2        1      1                  NA
#>  3 aoml/5906206/profiles/BD5906206…        3        1      1                  NA
#>  4 aoml/5906206/profiles/BD5906206…        4        1      1                  NA
#>  5 aoml/5906206/profiles/BD5906206…        5        1      1                  NA
#>  6 aoml/5906206/profiles/BD5906206…        6        1      1                  NA
#>  7 aoml/5906206/profiles/BD5906206…        7        1      1                  NA
#>  8 aoml/5906206/profiles/BD5906206…        8        1      1                  NA
#>  9 aoml/5906206/profiles/BD5906206…        9        1      1                  NA
#> 10 aoml/5906206/profiles/BD5906206…       10        1      1                  NA
#> # … with 40,580 more rows