These functions are intended to be applied to argo_global_meta() and other global index tables in the argo_global_*() family.

argo_filter_radius(tbl, latitude, longitude, radius_km)

argo_filter_rect(tbl, latitude_min, latitude_max, longitude_min, longitude_max)

argo_filter_date(tbl, date_min, date_max = Sys.time())

argo_filter_updated(tbl, date_update_min, date_update_max = Sys.time())

argo_filter_float(tbl, float)

argo_filter_parameter(tbl, parameter)

argo_filter_data_mode(tbl, data_mode)

argo_filter_parameter_data_mode(tbl, parameter, data_mode)

argo_filter_direction(tbl, direction)

Arguments

tbl

A data.frame, ideally derived from argo_global_meta() and family. The column conventions used by the global indexes is assumed (e.g., columns latitude and longitude exist).

latitude, longitude

A location.

radius_km

A radius from the point described by latitude and longitude.

latitude_max, latitude_min, longitude_max, longitude_min

A rectangle describing the desired bounds. A rectangle where longitude_min is greater than longitude_max are interpreted as wrapping across the international date line.

date_min, date_max, date_update_min, date_update_max

A range of datetimes. Users are responsible for setting the timezone for these objects and are encouraged to used UTC.

float

A float identifier.

parameter

One or more (case insensitive) parameter names in which to search the parameters column of the bio-prof and synthetic-prof index files.

data_mode

One of "realtime" or "delayed".

direction

One of "ascending" or "descending"

Value

tbl with rows that match the search criteria.

Examples

library(dplyr, warn.conflicts = FALSE)

if (FALSE) {
argo_global_prof() %>%
  # within 500 km of Halifax, Nova Scotia
  argo_filter_radius(45, -64, 500)
}

with_argo_example_cache({
  argo_global_traj() %>%
    argo_filter_rect(40, 60, -64, -54)
})
#> Loading argo_global_traj()
#> # A tibble: 669 × 8
#>    file      latitude_max latitude_min longitude_max longitude_min profiler_type
#>    <chr>            <dbl>        <dbl>         <dbl>         <dbl>         <dbl>
#>  1 aoml/190…         52.6        33.5          -40.1         -74.0           851
#>  2 aoml/190…         40.5        25.6          -57.3         -75.3           851
#>  3 aoml/390…         41.8         1.42         180.         -180.            846
#>  4 aoml/390…         42.4        28.4          -47.1         -75.3           851
#>  5 aoml/390…         40.9        27.7          -49.9         -76.6           852
#>  6 aoml/390…         45.6        19.9          -27.8         -75.9           851
#>  7 aoml/390…         41.8        33.8          -44.1         -74.3           854
#>  8 aoml/490…         58.0        52.9          180.         -180.            846
#>  9 aoml/490…         60.4        53.9          180.         -180.            846
#> 10 aoml/490…         54.6        51.1          180.         -180.            846
#> # … with 659 more rows, and 2 more variables: institution <chr>,
#> #   date_update <dttm>

with_argo_example_cache({
  argo_global_traj() %>%
    argo_filter_updated("2020-01-01 00:00") %>%
    select(date_update, everything())
})
#> # A tibble: 5,695 × 8
#>    date_update         file              latitude_max latitude_min longitude_max
#>    <dttm>              <chr>                    <dbl>        <dbl>         <dbl>
#>  1 2020-06-25 20:34:53 aoml/1900959/190…        21.0         17.1           40.7
#>  2 2020-06-25 20:35:16 aoml/1900960/190…        21.7         19.5           38.7
#>  3 2020-08-04 20:00:59 aoml/1900978/190…       -42.3        -61.3          177. 
#>  4 2020-04-10 20:01:01 aoml/1900979/190…       -38.9        -48.8          143. 
#>  5 2020-01-20 21:01:32 aoml/1901117/190…       -23.5        -40.8           81.3
#>  6 2020-03-06 21:01:34 aoml/1901393/190…       -21.9        -49.7          143. 
#>  7 2020-01-16 21:01:19 aoml/1901441/190…         2.84        -2.66          98.6
#>  8 2020-10-14 20:02:02 aoml/1901443/190…        -3.62        -9.50          94.7
#>  9 2020-10-13 20:02:00 aoml/1901444/190…        -1.54        -9.69         107. 
#> 10 2020-10-14 20:02:12 aoml/1901445/190…         1.73       -12.9          112. 
#> # … with 5,685 more rows, and 3 more variables: longitude_min <dbl>,
#> #   profiler_type <dbl>, institution <chr>

with_argo_example_cache({
  argo_global_traj() %>%
    argo_filter_float(c("13857", "15851"))
})
#> # A tibble: 2 × 8
#>   file       latitude_max latitude_min longitude_max longitude_min profiler_type
#>   <chr>             <dbl>        <dbl>         <dbl>         <dbl>         <dbl>
#> 1 aoml/1385…         6.93        0.008        -15.0          -33.8           845
#> 2 aoml/1585…        -2.73       -6.22           3.33         -21.1           845
#> # … with 2 more variables: institution <chr>, date_update <dttm>

with_argo_example_cache({
  argo_global_traj() %>%
    argo_filter_data_mode("delayed")
})
#> # A tibble: 1,986 × 8
#>    file      latitude_max latitude_min longitude_max longitude_min profiler_type
#>    <chr>            <dbl>        <dbl>         <dbl>         <dbl>         <dbl>
#>  1 aoml/190…         6.56       -9.67          -14.0         -50.6           851
#>  2 aoml/190…        -1.56       -6.07          -18.6         -43.2           851
#>  3 aoml/190…         5.13        0.824         -27.4         -35.4           851
#>  4 aoml/190…       -35.6       -47.1            80.4          21.1           851
#>  5 aoml/190…       -33.5       -40.3            41.1          18.1           851
#>  6 aoml/190…       -34.7       -53.9            95.6          20.8           851
#>  7 aoml/190…       -25.7       -44.0            42.6          16.4           851
#>  8 aoml/190…       -22.3       -28.7            83.3          73.9           851
#>  9 aoml/190…       -19.8       -41.1            72.0          16.8           851
#> 10 aoml/190…       -22.8       -32.1            67.0          47.2           851
#> # … with 1,976 more rows, and 2 more variables: institution <chr>,
#> #   date_update <dttm>